1.5 Inverse Relations

A Inverse Relation For any relation there is an inverse relation obtained by interchanging (switching) x and y for all the elements (ordered pairs) of the original relation. The inverse relation of the relation r is denoted by r^{-1} .	Ex 1. Find the inverse relation of the relation $r = \{(1,2), (1,0), (-2,1), (0,2)\}$
B Symmetry The graph of a relation and the graph of its inverse relation are symmetrical about the line $y = x$.	Ex 2. A relation r is given by the following graph. Find and graph the inverse relation r^{-1} and observe the symmetry.
C Corresponding Key Points A point $P(x, y)$ on the relation r corresponds to the point $P'(y, x)$ on the inverse relation r^{-1} . The points P and P' are symmetrical about the line y = x.	Ex 3. A relation is given by the graph to the right. Use corresponding key points to graph the inverse relation.
D Domain and Range The domain of the inverse relation r^{-1} is the same as the range of the relation $r: D_{r^{-1}} = R_r$. The range of the inverse relation r^{-1} is the same as the domain of the relation $r: R_{r^{-1}} = D_r$.	Ex 4. A relation <i>r</i> is given by the following mapping diagram: -5 -2 0 2 -3 0 2 -3 0 2 -3 1 a) Find the domain and the range of the relation <i>r</i> . b) Find the domain and the range of the relation r^{-1} . c) Explain how you would get the inverse relation.

E Inverse Relation of a Function Any function is a relation.	Ex 5. For each case, use key points to graph the function and its inverse relation. Is the inverse relation
So, any function f has an inverse relation f^{-1} .	
Note: The inverse relation of a function may be or not a function.	a) $y = x^2$
	b) $y = x - 1 $
	c) $y = 2 - \sqrt{x - 1}$
F Algebraic Method To find the inverse of a function: a) write the original function in the form $y = f(x)$ b) switch the variable x and y c) solve the last expression for y d) replace y by $f^{-1}(x)$	Ex 6. Find the inverse of each one-to-one function. State the domain and the range for the function and the inverse function. a) $f(x) = -2x+3$
	b) $f(x) = \frac{x-1}{x+2}$
	c) $f(x) = 1 - 2\sqrt{x - 3}$
	*d) $y = x + \sqrt{x}$
G One-to-One Functions	Ex 7. Prove that the following relations are true for any
If the inverse relation of a given function f is also a function then the original function f is called and the	one-to-one function $f: X \to Y$.
one function. In this case:	a) $f(f^{-1}(x)) = x$ for any $x \in Y$
$y = f(x) \Leftrightarrow x = f^{-1}(y)$	b) $f^{-1}(f(x)) = x$ for any $x \in X$

Reading: Nelson Textbook, Pages 38-43 **Homework**: Nelson Textbook, Page 43: #1af, 2cd, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 17