1.5 Inverse Relations

A Inverse Relation

For any relation there is an inverse relation obtained by interchanging (switching) x and y for all the elements (ordered pairs) of the original relation.
The inverse relation of the relation r is denoted by r^{-1}.

B Symmetry

The graph of a relation and the graph of its inverse relation are symmetrical about the line $y=x$.

C Corresponding Key Points

A point $P(x, y)$ on the relation r corresponds to the point $P^{\prime}(y, x)$ on the inverse relation r^{-1}.

The points P and P^{\prime} are symmetrical about the line $y=x$.

Ex 1. Find the inverse relation of the relation
$r=\{(1,2),(1,0),(-2,1),(0,2)\}$

Ex 2. A relation r is given by the following graph. Find and graph the inverse relation r^{-1} and observe the symmetry.

Ex 3. A relation is given by the graph to the right. Use corresponding key points to graph the inverse relation.

Ex4. A relation r is given by the following mapping diagram:

a) Find the domain and the range of the relation r.
b) Find the domain and the range of the relation r^{-1}.
c) Explain how you would get the inverse relation.

E Inverse Relation of a Function

Any function is a relation.
So, any function f has an inverse relation f^{-1}.

Note: The inverse relation of a function may be or not a function.

F Algebraic Method

To find the inverse of a function:
a) write the original function in the form $y=f(x)$
b) switch the variable x and y
c) solve the last expression for y
d) replace y by $f^{-1}(x)$

Ex 5. For each case, use key points to graph the function and its inverse relation. Is the inverse relation a function?
a) $y=x^{2}$
b) $y=|x-1|$
c) $y=2-\sqrt{x-1}$

Ex 6. Find the inverse of each one-to-one function. State the domain and the range for the function and the inverse function.
a) $f(x)=-2 x+3$
b) $f(x)=\frac{x-1}{x+2}$
c) $f(x)=1-2 \sqrt{x-3}$
*d) $y=x+\sqrt{x}$
Ex 7. Prove that the following relations are true for any one-to-one function $f: X \rightarrow Y$.
a) $f\left(f^{-1}(x)\right)=x \quad$ for any $x \in Y$
b) $f^{-1}(f(x))=x \quad$ for any $x \in X$

H Horizontal Line Test

One-to-one functions pass the horizontal line test:
Any horizontal line intersects the graph in at most one point.

I Restricted Domains
By restricting the domain of a function (which is not one-to-one), we may obtain a one-to-one function.

Ex 8. Classify each graph as a relation, function or one-to-one function.
a)

c)

b)

d)

Ex 9. Consider the function:
$f(x)=-(x-1)(x+5) \quad, \quad x \leq-2$
a) Convert the function to the vertex form.
b) State the domain and the range of the function $f(x)$.
c) Find the inverse function $f^{-1}(x)$.
d) State the domain and the range of the function $f^{-1}(x)$.
e) Sketch the graph of the functions $f(x)$ and $f^{-1}(x)$ on the grid provided to the left.

Reading: Nelson Textbook, Pages 38-43
Homework: Nelson Textbook, Page 43: \#1 af, 2cd, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 17

